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Abstract  
Advanced possibilities have emerged in recent years for semi-automatic crop type mapping 

at the national level due to the availability of Sentinel-1 and -2 satellite data. In this study, 14 crop 

type classes were mapped over Bulgaria using three bi-monthly composite image mosaics for 2019 

generated in the Google Earth Engine (GEE) cloud computing platform. The overall accuracy, when 

both Sentinel-1 and -2 mosaics were used, was 78%, while the accuracy was slightly less when only 

Sentinel-2 data were used (75%). The accuracy was highest for “Cereals”, “Maize”, “Sunflower”, 

“Winter rapeseed”, and “Rice” – over 80% for both user’s and producer’s. However, the accuracy 

for classes such as “Vegetables”, “Technical crops”, “Forage crops”, “Fallow”, etc. was low. 

These classes represent categories suitable for agricultural practice and statistics, but are too 

general and difficult to distinguish using satellite data. It was also found that accuracy tends to be 

higher for larger parcels. Using composites with higher frequency and adapting the legend classes to 

include only crops similar in phenology and morphology are suggested as possible ways forward.  

 

 
Introduction 
 

The potential of Sentinel-2 for crop type mapping has been demonstrated in 

recent years by numerous studies. The high temporal resolution (5 days when both 

Sentinel-2 A and B satellites are used) is one of the key characteristics of the 

Sentinel-2 imagery, which makes it particularly useful for crop mapping because it 

provides multiple snapshots of crop development during the growing season. These 

benefits are clearly demonstrated by the multi-date approach, where (all) available 

cloud-free images during the season are used for classification, e.g. [1, 2]. While 

this approach is relevant for relatively small study areas, national scale or large 

area applications, e.g. [3–5], should deal with images from different orbits (thus 

different date), large volumes of data, and the cloud cover. Cloud storage and 

computing facilities, such as Google Earth Engine (GEE) [6] facilitate significantly 

such applications. Additionally, Sentinel-1 Synthetic Aperture Radar (SAR) data 

have also been used to map crop types [7, 8]. Van Tricht et al. [3] found that 
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combining radar and optical data for crop classification led to increasing 

classification accuracies compared to optical-only classification. 

A previous case study from Bulgaria [9] demonstrated the utility of Sentinel-

2 imagery for crop type mapping in small regions using selected cloud-free scenes. 

The authors suggested that future studies should address the problems related to 

mapping at national scale and also to integrate Sentinel-1 data in the classification 

in an attempt to increase the accuracy. This study, therefore, tries to build on past 

results and its aim is to produce and evaluate a national scale crop type map of 

Bulgaria based on Sentinel-1 and Sentinel-2 imagery. The results are also 

compared with those obtained using only Sentinel-2 imagery. Finally, the map 

accuracy is analysed with respect to the field size.     

 

Data and methods  
 

The CORINE Land Cover (CLC) 2018 dataset is used to define the area of 

interest, which includes only agricultural areas. Thus, only the regions with code 

200 according to the CLC level 1 are further considered for the image 

classification.  

Based on the agroclimatic zoning of Bulgaria [10] the country is divided into 

four agroclimatic regions: 1. cool and moderately cool, wet region (mountain 

areas); 2. Moderately warm and warm region, less liable to droughts (most of the 

Danube plain and the basins and low mountain parts in southern Bulgaria); 3. 

moderately hot and hot region, liable to droughts (the northernmost part of the 

Danube plain, the Upper Thracian lowland, and lowland of Burgas); and 4. Hot, 

arid region (the lower part of Struma valley). The data pre-processing and 

classification are repeated for each region and the final crop map is obtained after 

merging the maps of the individual regions.    

Data about parcel borders and the crop sown in each parcel in 2018/2019 

agricultural year are available in a vector format from State Fund “Agriculture” 

(SFA). The data are based on declarations made by farmers who apply for aid 

under Common Agricultural Policy (CAP) and national programmes and have 

complete coverage of the country’s agricultural area. These data are collected as 

part of the Integrated Administration and Control System (IACS). A special 

nomenclature of crops is used in this dataset, which, at the lowest level, includes 

more than 200 crops, which are aggregated in groups (e.g. technical crops) and 

subgroups (e.g. industrial crops, oil crops, etc.) at the higher levels. For this study, 

the crops were aggregated in a customised legend, including some important 

individual crops and some wider classes based on the groups and subgroups of the 

original nomenclature. The 14 classes are as follows: “Cereals”, “Maize”, “Grain 

legumes”, “Technical crops”, “Sunflower”, “Winter rapeseed”, “Forage crops”, 

“Meadows and pastures”, “Alfalfa”, “Vegetables”, “Fallow”, “Vineyards and 

orchards”, “Perennial medical and aromatic crops”, and “Rice”. The legend is 
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constructed to be maximally close to the nomenclature used by the state authorities 

in the agricultural sector. Fig. 1 presents the major stages in the phenological cycle 

of some crops and crop types. The parcels are divided by random in two parts: for 

training and for the validation of the classification algorithm (70:30), and are 

converted to raster format.  

 

 
 

Fig. 1. Crop calendar of some crops and crop types in Bulgaria for 2019 

 

The next steps, including satellite image pre-processing, training of the 

classifier, and classification, are performed in Google Earth Engine (GEE).  The 

following GEE collections are used: “COPERNICUS/S2” consisting of Sentinel-2 

A&B scenes at level 1C, and “COPERNICUS/S1_GRD” consisting of Sentinel-1 

Ground Range Detected (GRD) scenes. The pre-processing steps for the Sentinel-2 

imagery include 1. Selection of scenes with cloud cover lower than 20%; 2. 

Applying the cloud and cirrus masks, which are part of the dataset (band QA60); 3. 

Generating three multiband temporal composite images using the median 

compositing rule, each containing bands B02-B08, B11, and B12:  March-April, 

June-July, and August-September 2019. The pre-processing steps for the Sentinel-1 

imagery include 1. Filter the scenes by orbit type and selecting only “ascending” 

imagery; 2. Clipping the edge of the scenes to remove bad pixels (an inland 

buffer); 3. Apply a function (provided by Kristof Van Tricht, VITO) to make sure 

all acquisitions in one pixel result from the same relative orbit; 4. Generating three 

multiband temporal composite images using the median compositing rule, each 

containing VV and VH polarisations: March-April, June-July, and August-

September 2019. Note that May is omitted from the compositing periods due to the 

frequent cloud cover this month. Two datasets were constructed from the imagery. 

The first has 27 bands and includes the Sentinal-2 composites. The second has 33 

bands and includes both Sentinal-2 and Sentinel-1 composites. 
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The Random Forest (RF) classification algorithm [11, 12] as implemented in 

GEE is used to classify the satellite image datasets. The raster with the parcels 

designated for training is imported in GEE and a stratified random sampling is 

performed with 1000 pixels per class (note that in some of the agroclimatic regions 

this number cannot be attained for some classes, which have limited distribution). 

The values of the image bands are extracted for each training pixel. These data are 

then used to train the RF classifier. The number of trees is set up to 100, which is 

considered good compromise between accuracy and computational time [13]. All 

other parameter values are left by default. The final map is exported from GEE in 

GeoTiff format with 10 m pixel size. 

The final crop map obtained after the four agroclimatic regions have been 

merged is “smoothed” by eliminating patches smaller than 10 pixels. This is 

performed using the Sieve tool of QGIS. Accuracy assessment is also performed in 

QGIS. For that purpose, the raster with the parcels designated for validation and 

the crop map raster are compared pixel by pixel and a confusion matrix is 

generated. Over 100 million pixels are used for this validation. Overall accuracy 

and class-wise accuracies (User’s and Producer’s) are calculated. Additionally, We 

repeated the same validation procedure several times but using only parcels with 

specific size: less than 0.5 ha, 0.5-1ha, 1–3 ha, 3–5 ha, and over 5ha.     

 

Results and discussion 
 

The overall accuracy of the map based solely on Sentinel-2 data is 74.8%, 

while the overall accuracy of the map based on a combination of Sentinel-1 and -2 

data is 78.1%. This confirms the added value of SAR data in crop type mapping. 

All results and discussions further on concern the map based on the combination of 

Sentinel-1 and -2 data which is shown in Fig. 2. A visual examination of the map 

shows that the agricultural land use pattern is well portrayed in most of the territory 

where large parcel sizes dominate. For example, Fig. 3A shows a map excerpt 

representing a small area near the town of Knezha in the Danube plain. Here, 

parcel borders and shapes are realistically represented and within-field 

heterogeneities caused by errors in the classification are rate. More importantly, in 

most parcels the crop type is accurately determined by the RF classifier if we 

compare it with the IACS dataset used in this study as a reference. In other parts of 

the country, however, the classification results are characterised with much noise. 

A typical example is to be found in the Upper Thracian lowland near Plovdiv, 

where parcel sizes are much smaller (Fig. 3B). The post-processing (i.e. the 

smoothing with the “sieve” tool) reduces noise but due to small parcel size, it 

resulted in disturbance of the parcels’ shape. Also, compliance with the IACS 

dataset is poorer.    

The performance is not constant among classes and the accuracy varies for 

the different crop types. Both user’s and producer’s accuracy are above 80% for the 
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classes “Cereals”, “Maize”, “Sunflower”, “Winter rapeseed”, and “Rice” (Fig. 4). 

Cereals, (which include mostly winter wheat and winter barley), maize, and 

sunflower represent the most important crops in the country in terms of area. Rice 

is particularly well classified, which is due to its specific method of cultivation. 

The class “Meadows and pastures” is mapped with moderate accuracy (70% and 

75% for producer’s and user’s accuracy respectively; Fig. 4). The accuracy for the 

other classes is lower. In particular, their user’s accuracies are low, which indicates 

that their occurrence is overestimated. For example, most of the pixels belonging to 

class “Vegetables” in the map are actually other crop types. The classes for which 

the RF classification has low accuracy are rare classes, which mean they represent 

a small part of the arable land in Bulgaria. This can be seen in the area distribution 

shown in Fig. 5.  

The most important misclassifications are as follows: 1. “Alfalfa” is 

overestimated at the expense of “Cereals” and “Meadows and pastures”; 2. 

“Technical crops” and “Grain legumes” are overestimated at the expense of 

“Sunflower” and “Cereals”; 3. “Forage crops” is overestimated at the expense of 

“Maize” and “Cereals”; 4. “Vegetables” is overestimated at the expense of 

“Sunflower” and “Fallow”; 5. “Vineyards and orchards” is overestimated at the 

expense of “Meadows and pastures”; 6. “Perennial medical and aromatic crops” 

and “Fallow” are mixed with many of the other classes. Most of the mixtures are 

with “Cereals”, “Sunflower”, and “Maize”, which can partially be explained by the 

fact that these are the most widespread classes. The similarity of classes in terms of 

crop phenology and/or physiognomy also plays a part. For example, “Alfalfa” is 

mixed with “Meadows and pastures”, both classes representing low herbaceous 

plants with continuous cover and similar phenological cycle (Fig. 1). Another 

reason for the errors in the classification is that some classes are too general and 

include crops which are not similar in their spectral characteristics but in their 

usage. For example, the “Forage crops” class includes, among others, crops as 

different as clover and corn for silage. This can partly explain the mixture with the 

“Maize” class. Fig. 6 shows the overall accuracy calculated for different parcel 

sizes. As the visual inspection of the map suggested the parcel size is related to the 

accuracy. The accuracy increased from below 60% for the smallest parcels to over 

80% for those larger than 5 ha. While the smallest parcels (<0.5 ha) are the most 

numerous, they account for only 3% of the area of all parcels designated for 

validation. The largest parcel category (> 5 ha) constitutes by far the largest area 

(76 %). These results can be explained with the fact that smaller fields have more 

border pixels, which represent a mixture of land uses. 

The application of the national crop map based on Sentinel data could be the 

calculation of areas of different crops for statistical purposes. To check the 

accuracy of the calculated areas they are compared with the areas from the IACS 

dataset (Fig. 5). To guarantee that the areas are comparable the Sentinel-based crop 

map is clipped to the extent of the IACS dataset. In general, the magnitude of the 
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class area differences is well reproduced using the Sentinel-based map. For 

example, “Meadows and pastures” has roughly half the area of “Sunflower” 

according to both datasets. However, the area of the three largest classes is 

somewhat underestimated with the Sentinel-based map data (the difference with 

IACS areas is 11–14%). The small-area classes are, as a rule, overestimated, this 

being the most severe for “Vineyards and orchards”, “Vegetables”, “Grain 

legumes”, and “Forage crops” where the difference from IACS data is more than 

100%. The most accurate are the areas of “Winter rapeseed” and “Rice”, which are 

within 3% and 9% of the IACS data, respectively.    

The accuracy of the Sentinel derived crop maps reported in the literature 

vary depending on the input data, methods and study area specifics. Very high 

accuracy (95–96%) was reported for example by Vuolo et al. [1], but they used a 

large number of cloud-free Sentinel-2 images, instead of composites, and mapped 

small region. In a study, similar to this presented here, Griffiths et al. [4] mapped 

12 crop and land cover classes over Germany with 81% overall accuracy. In 

another national scale exercise Van Tricht et al. [3] classified dense time series of 

Sentinel-2 NDVI and Sentinel-1 backscatter data to map 12 crops and land cover 

types in Belgium, achieving overall accuracy of 82%. These results are similar to 

the accuracy reported here.  

 

 
 

Fig. 2. Crop type map of Bulgaria for 2018/2019 agricultural year derived from Sentinel-1 

and -2 data. White areas are non-agricultural land 
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The two-month compositing interval used in this study is relatively long to 

allow fine phenological differences between crops and be captured (Fig. 1). 

However, it ensured cloud-free Sentinel-2 mosaics over the entire study area with a 

negligible cloud contamination according to the visual inspection. Other studies 

have successfully applied shorter compositing periods for Sentinel-2, e.g. 10-day or 

month, but this may require smoothing and gap-filling the time series or even 

ingestion of Landsat observations [4, 5]. Griffiths et al. [4] showed that using 10-

day composites resulted in higher accuracy for most classes than longer 

compositing periods. These developments may increase mapping accuracy in the 

Bulgarian context as well and should be examined in future studies.    

 

 
 

Fig. 3. Comparison of the crop type map of Bulgaria for 2019 derived from Sentinel-1  

and -2 data with the IACS dataset for selected regions: (A) Danube plain near Knezha and 

(B) Upper Thracian lowland near Plovdiv 
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Fig. 4. User’s and Producer’s accuracy (%) of the 14 classes of the crop map  

 

 
 

Fig. 5. Comparison of the areas of the 14 classes according to the Sentinel-based national 

crop map and the IACS dataset 
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Fig. 6. Overall accuracy as a function of the parcel size. Area proportions are based  

on the validation dataset  

 
Conclusions 
 

This study is, to our knowledge, the first attempt to map crop types over the 

entire Bulgarian territory using Sentinel satellite imagery. A moderate overall 

accuracy of 78% is achieved, but results are better for the most important crops and 

crop types – “Cereals”, “Sunflower”, and “Maize”. Problem for the classification is 

the recognition of some classes, which are too heterogeneous, e.g. “Vegetables” 

and “Forage crops”. Such classes are included in the legend to comply with the 

existing nomenclature of crops used in the country, but the poor accuracy suggests 

that their usage is impossible in the context of the semi-automated remote sensing-

based mapping. Higher overall accuracy was achieved with a combination of 

Sentinel-1 and -2 data than using only optical imagery. This confirms that SAR 

data derive important information for crop discrimination. It was also found that 

accuracy tends to be higher for larger parcels. Future studies should concentrate on 

the adjustment of the definitions of the classes. Mapping only individual crops, 

instead of groups of crops, is another approach but this would require a more 

computational resources. Further improvement of results may require testing of 

other classification algorithms and/or using composites with higher frequency.   
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КАРТОГРАФИРАНЕ НА ЗЕМЕДЕЛСКИТЕ КУЛТУРИ В БЪЛГАРИЯ 

ЧРЕЗ ДАННИ ОТ SENTINEL-1/2 

 
П. Димитров, Л. Филчев, Е. Руменина, Г. Желев 

 
Резюме 

През последните години, благодарение на достъпа до сателитни данни 

от Sentinel-1 и -2, се появиха нови възможности за полуавтоматично карто-

графиране на земеделските култури на национално ниво. В това изследване 

са картографирани 14 земеделски култури и групи от култури на територията 

на България използвайки три двумесечни композитни изображения за 2019 

година, генерирани в облачната платформа Google Earth Engine (GEE). 

Общата точност, когато се използват изображения както от Sentinel-1, така и 

от Sentinel-2 е 78%, докато точността е малко по-ниска, когато се използват 

само данни от Sentinel-2 (75%). Точността е най-висока за класовете 

“Зърнено-житни култури”, “Царевица”, “Слънчоглед”, “Зимна рапица” и 

“Ориз” – над 80%. Точността при класове като “Зеленчуци”, “Технически 

култури”, “Фуражни култури”, “Угар” и др. обаче е по-ниска. Тези класове 

представляват категории, подходящи за използване в земеделската практика 

и статистика, но са твърде общи и трудни за отличаване чрез сателитни 

данни. Беше установено също така, че точността е по-висока за парцелите с 

по-големи размери. Като възможни пътища за подобряване на резултатите са 

посочени използването на серия от композитни изображения с по-голяма 

честота и адаптирането на класовете от класификационната система, така че 

да включват култури, които са сходни по фенология и морфология.  

 


